roots of quadratics

- [SQA] 1.
- (i) Write down the condition for the equation $ax^2 + bx + c = 0$ to have no real roots.

1

2

4

5

(ii) Hence or otherwise show that the equation x(x + 1) = 3x - 2 has no real roots.

	Part	Marks	Level	Calc.	Content	Answer	U2 OC1
ı		3	С	CN	A17		1999 P1 Q8

- $b^2 4ac = 0$
- $x^2 + 6x + 9 = 0$
- •3 $b^2 4ac = 36 36 = 0$ OR •3 (x+3)(x+3) = 0 so roots are -3, -3

[SQA] 2. Show that the roots of the equation $(k-2)x^2 - (3k-2)x + 2k = 0$ are real.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	1	С	CN	A17		1990 P1 Q18
	3	A/B	CN	A17		

- use discriminant Δ
- 2 $\Delta = (3k-2)^{2} 8k(k-2)$
- 3 $\Delta = k^{2} + 4k + 4$
- $(k+2)^2 > 0$ so roots real

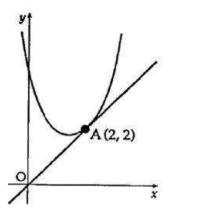
[SQA] 3. Given that k is a real number, show that the roots of the equation $kx^2 + 3x + 3 = k$ are always real numbers.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	1	С	NC	A17		1991 P1 Q18
	4	A/B	NC	A17		

- for realising " $b^2 4ac$ " ≥ 0
- $kx^2 + 3x + (3-k) = 0$
- 3 $\Delta = 3^{2} 4k(3-k)$
- $\bullet^4 \quad \Delta = (2k-3)^2$
- for stating $(2k-3)^2$ is ≥ 0 for all real k

4. (a) The point A(2, 2) lies on the parabola $y = x^2 + px + q$.

Find a relationship between p and q.



(b) The tangent to the parabola at A is the line y = x. Find the value of p. Hence find the equation of the parabola.

(6)

(1)

(c) Using your answers for p and q, find the value of the discriminant of $x^2 + px + q = 0$. What feature of the above sketch is confirmed by this value?

(2)

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	1	С	CN	A6		1994 P2 Q9
(b)	2	С	CN	C4, CGD		
(b)	4	A/B	CN	C4, CGD		
(c)	2	A/B	CN	A17		

(a)
$$^{1} 2p+q=-2$$

- (b) 2 strategy
 - 3 2x+p
 - gradient = 1, or equivalent
 - •5 4+p
 - p = -3
 - ·7 q=4
- (c) .8 A=-7
 - •9 √-7 means no roots

(i) Find
$$g(f(x))$$
. (2)

(ii) Find
$$f(g(x))$$
. (2)

(b) (i) Show that the equation
$$g(f(x)) - f(g(x)) = 0$$
 simplifies to $2x^2 + 4x - k = 0$. (2)

(ii) Determine the nature of the roots of this equation when
$$k = 6$$
. (2)

(iii) Find the value of k for which
$$2x^2 + 4x - k = 0$$
 has equal roots. (3)

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	4	С	NC	A4		1996 P2 Q4
(b)	7	С	NC	A17, A18, A6		

(a) • 1
$$g(2x+1)$$
 (b) • 5 $4x^2 + 4x + k + 1$ $AND 2x^2 + 2k + 1$
• 6 $4x^2 + 4x + k + 1 - (2x^2 + 2k + 1) = 0$

•3
$$f(x^2+k)$$
 so $2x^2+4x-k=0$

•2
$$(2x+1)^2 + k$$
•6 $4x^2 + 4x + k + 1 - (2x^2 + 2k + 1)$
•3 $f(x^2 + k)$
•4 $2(x^2 + k) + 1$
•5 $6x^2 + 4x + k + 1 - (2x^2 + 2k + 1)$
•6 $6x^2 + 4x + k + 1 - (2x^2 + 2k + 1)$
•7 $6x^2 + 4x + k + 1 - (2x^2 + 2k + 1)$
•8 so $2x^2 + 4x - k = 0$
•8 so roots real & distinct

$$b^{2} - 4ac = 16 - 4 \times 2 \times (-k)$$

 $b^{2} - 4ac = 0$ for equal roots

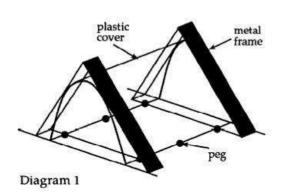
•
$$b^2 - 4ac = 0$$
 for equal roots

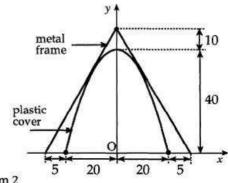
•
11
 $k = -2$

[SOA]

6. Diagram 1 shows a rectangular plate of transparent plastic moulded into a parabolic shape and pegged to the ground to form a cover for growing plants. Triangular metal frames are placed over the cover to support it and prevent it blowing away in the wind.

Diagram 2 shows an end view of the cover and the triangular frame related to the origin O and axes Ox and Oy. (All dimensions are given in centimetres.)





(4)

(7)

Diagram 2

- (a) Show that the equation of the parabolic end is $y = 40 \frac{x^2}{100}$, $-20 \le x \le 20$.
- (b) Show that the triangular frame touches the cover without disturbing the parabolic shape.

Ι	Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	(a)	1	С	CN	A7		1991 P2 Q10
	(a)	3	A/B	CN	A7		
	(b)	3	С	CN	G2, G3		
	(b)	4	A/B	CN	A23, A17, A20		

(a)
$$\bullet^1 \qquad y = ax^2 + bx + c$$

•
2
 (0,40) $\Rightarrow c = 40$

•
3
 symmetry $\Rightarrow b = 0$

• 4 (20,0)
$$\Rightarrow a = -\frac{1}{10}$$

- (b) strategy: find equ of line and solve with parabola
 - e.g. gradient of left line = 2

$$y = 2x + 50$$

$$e^8$$
 $2x + 50 = 40 - \frac{1}{10}x^2$

$$x^2 + 20x + 100 = 0$$

$$b^2 - 4ac = 0$$
 or $(x-10)^2 = 0$

•11 equal roots so line is tangent to parabola

[SQA]

- (a) Write the equation $\cos 2\theta + 8\cos \theta + 9 = 0$ in terms of $\cos \theta$ and show that, for $\cos \theta$, it has equal roots.
- (*b*) Show that there are no real roots for θ .

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
(a)	1	С	CN	T8, A17		1998 P1 Q18
(a)	2	A/B	CN	T8, A17		
(b)	1	A/B	CN	A1		

 $^{-1}$ $2\cos^2\theta - 1 + 8\cos\theta + 9$

 \cdot^4 cos $\theta = -2$ has no solution

- $-2 \qquad \qquad 2(\cos\theta + 2)^2 =$
 - or " $b^2 4ac$ " = $16 4 \times 1 \times 4$
- e^3 $\cos \theta = -2$ twice or " $e^2 4ac$ " = 0
- [SQA] 8. For what range of values of k does the equation $x^2 + y^2 + 4kx 2ky k 2 = 0$ represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	A	NC	G9, A17	for all <i>k</i>	2000 P1 Q6

- •¹ ss: know to examine radius
- •² pd: process
- •³ pd: process
- ic: interpret quadratic inequation
- ic: interpret quadratic inequation
- •¹ g = 2k, f = -k, c = -k 2stated or implied by •²
- $r^2 = 5k^2 + k + 2$
- 3 (real $r \Rightarrow$) $5k^2 + k + 2 > 0$ (accept >)

3

1

5

3

- 4 use discr. **or** complete sq. **or** diff.
- 5 true for all k
- 9. For what value of k does the equation $x^2 5x + (k+6) = 0$ have equal roots?

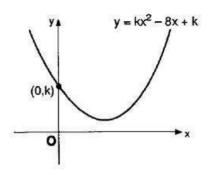
Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	3	С	CN	A18	$k = \frac{1}{4}$	2001 P1 Q2

- •¹ ss: know to set disc. to zero
- \bullet^2 ic: substitute a, b and c into discriminant
- 3 pd: process equation in k

- \bullet^1 $b^2 4ac = 0$ stated or implied by \bullet^2
- $\bullet^2 (-5)^2 4 \times (k+6)$
- 3 $k = \frac{1}{4}$

[SOA]

10. Calculate the least positive integer value of k so that the graph of $y = kx^2 - 8x + k$ does not cut or touch the x-axis.



Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	1	С	NC	A18		1992 P1 Q17
	3	A/B	NC	A18		

- strat: use discriminant

11. Find the values of k for which the equation $2x^2 + 4x + k = 0$ has real roots. [SQA]

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	2	С	NC	A18		1993 P1 Q3

- discriminant = $16 4 \times 2 \times k$
- $16-8k \ge 0$ for real roots $\Rightarrow k \le 2$

12. The roots of the equation (x-1)(x+k) = -4 are equal. [SQA]

Find the values of k.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	1	С	CN	A18		1995 P1 Q20
	4	A/B	CN	A18	k = -5.3	

- $x^2 + kx x + 4 k = 0$ $b^2 4ac = 0$ $(k-1)^2 4(4-k)$ $k^2 + 2k 15 = 0$

- k = -5, k = 3

2

5

[SOA]

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	2	С	NC	A18		1996 P1 O2

$$b^2 - 4ac = 0$$

$$a = 2\frac{1}{2}$$

[SQA] 14. Show that the equation $(1-2k)x^2 - 5kx - 2k = 0$ has real roots for all integer values of k.

5

2

ĺ	Part	Marks	Level	Calc.	Content	Answer	U2 OC1
I		5	A/B	CN	A18, A16, CGD	proof	2002 P2 Q9

- •¹ ss: know to use discriminant
- 2 ic: pick out discriminant
- ³ pd: simplify to quadratic
- ss: choose to draw table or graph
- pd: complete proof using disc. ≥ 0
- \bullet^1 discriminant = ...
- \bullet^2 disc = $(-5k)^2 4(1-2k)(-2k)$
- $\bullet^3 9k^2 + 8k$
- $ullet^4$ e.g. draw a table, graph, complete the square
- •5 complete proof and conclusion relating to disc. ≥ 0

[SQA] 15. Find the possible values of k for which the line x - y = k is a tangent to the circle $x^2 + y^2 = 18$.

5

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	2	С	CN	A18, A20		1989 P1 Q18
	3	A/B	CN	G13		

- $x^2 + (x-k)^2 = 18$
- e^2 $2r^2 2kr + k^2 18 = 0$
- 3 strat: " $b^2 4ac$ " = 0
- •4 $(-2k)^2 4.2(k^2 18)$
- $k = \pm 6$

[END OF QUESTIONS]